Dietary interventions dramatically affect metabolic disease and lifespan in various aging models. Here, researchers from the Shanghai Institutes for Biological Sciences profiled liver microRNA (miRNA), coding, and long non-coding RNA (lncRNA) expression by high-throughput deep sequencing in mice across multiple energy intake and expenditure interventions. Strikingly, three dietary intervention network design patterns were uncovered: (1) lifespan-extending interventions largely repressed the expression of miRNAs, lncRNAs, and transposable elements; (2) protein-coding mRNAs with expression positively correlated with long lifespan are highly targeted by miRNAs; and (3) miRNA-targeting interactions mainly target chromatin-related functions.
These findings demonstrate lifespan-extending diets repress miRNA-chromatin remodeler interactions and safeguard against deregulated transcription induced by aging and lifespan shortening diets, events linked by microRNA, chromatin, and ncRNA crosstalk.