Prediction

LncFinder – an integrated platform for long non-coding RNA identification

lncRNA

Discovering new long non-coding RNAs (lncRNAs) has been a fundamental step in lncRNA-related research. Nowadays, many machine learning-based tools have been developed for lncRNA identification. However, many methods predict lncRNAs using sequence-derived features alone, which tend to display unstable performances on different species. Moreover, the majority of tools cannot be re-trained or tailored by users and neither can the features ...

Read More »

HLPI-Ensemble – Prediction of human lncRNA-protein interactions based on ensemble strategy

lncRNA

LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. Researchers from Liaoning University present a model called HLPI-Ensemble designed ...

Read More »

TPGLDA – Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph

lncrna

Accumulating evidences have indicated that lncRNAs play an important role in various human complex diseases. However, known disease-related lncRNAs are still comparatively small in number, and experimental identification is time-consuming and labor-intensive. Therefore, developing a useful computational method for inferring potential associations between lncRNAs and diseases has become a hot topic, which can significantly help people to explore complex human ...

Read More »

A deep learning method for lincRNA detection using auto-encoder algorithm

lncRNA

RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the ...

Read More »

A computational approach to predict scaffolding lncRNAs at large scale

lncRNA

The human transcriptome contains thousands of long non-coding RNAs (lncRNAs). Characterizing their function is a current challenge. An emerging concept is that lncRNAs serve as protein scaffolds, forming ribonucleoproteins and bringing proteins in proximity. However, only few scaffolding lncRNAs have been characterized and the prevalence of this function is unknown. Here, researchers from the Aix-Marseille University, Inserm propose the first computational ...

Read More »

Fusing multiple protein-protein similarity networks can effectively boost the performance of predicting lncRNA-protein interactions

lncrna

Long non-coding RNA (lncRNA) plays important roles in many biological and pathological processes, including transcriptional regulation and gene regulation. As lncRNA interacts with multiple proteins, predicting lncRNA-protein interactions (lncRPIs) is an important way to study the functions of lncRNA. Up to now, there have been a few works that exploit protein-protein interactions (PPIs) to help the prediction of new lncRPIs. ...

Read More »